JavaScript Workshop

Why This?

Most people either don’t understand
JavaScript, or,

They think they do but don't
Wrongfully given a bad reputation
Trying raise awareness of it's potential

Why Me?

One of the few people that actually like the
language

Responsible for introducing JS framework and
development standards in AlB Jaguar Project

Written & Developing Eclipse plugins to automate
compression and code checking of JavaScript
files

Written several jQuery plugins & proof of
concepts (Annotations, Constraints, Input Mask)

o
'Firebu
° % web development evolved
%

Debugging
Logging

On the fly CSS/HTML/JS editing
Profiling

Monitoring Ajax Requests

Page Weight Analysis

CSS 101

What is CSS
Cascading Styles

Selectors
— Type Selectors
Descendant Selector
Child Selectors
Adjacent Selectors
Attribute Selectors
Class Selectors
ID Selectors
Universal Selector
— Pseudo-class Selectors
Specificity
Grouping
Shorthand Properties
limportant rule

Overview

What is CSS?

CSS — Cascading Style Sheets
Specify how elements in the DOM should be rendered

A stylesheet is a collection of CSS Rules which in turn
are collections of key/value pair style properties

body { text-align:right; }
body {
text-align : right;
font-size : 12px;

}

Elements take on the stylistic properties where most
specific properties take precedence (hence Cascading)

Styles are applied progressively
Styles can be specified in a number of ways

Cascading Styles

There are 4 ways styles get applied to
elements in the DOM. These are:

Browser default styles
External stylesheet
Internal stylesheet
Inline styles

NV

Order of

Precedence

Taking a single page it is possible to
progressively enhance it's appearance

Cascading Styles Example

Selectors

body { text-align:right; }

* A selector is a pattern matching rule that
specifies the elements to apply the style
rules to.

* These can range from simple type patterns
(above) to very complex matching rules.

Type Selectors

« Specify the element type to match i.e. the
type of tag to match

body { text-align:right; }

* Disregards document position entirely

Descendant Selectors

* This is 2 or more selectors separated by spaces where
the selector on the right must be a descendant (direct or
non-direct) of the one on the left of it

ul 1li { display:inline; }

This selector is saying all li elements who are
descendants of ul elements should have the rule applied

Beware heavily nested trees might cause side effects
(e.g. a list of lists where the topmost li should only get
styled — this is no applicable to the descendant selector)

Child Selectors

* This is 2 or more selectors separated by “>"
where the selector on the right must be a child
(or direct descendant) of the one on the left of it

ol > 1li1 { font-weight:bold; }

* Unsupported in Internet Explorer until recently
» Useful for nested elements

Adjacent Selectors

» 2 selectors separated by + where the second
selector shares the same parent as the first and
immediately follows it.

hl + p { font-size:1l.2Z2em; }

» Useful for handling padding issues around
images, or performing formatting on initial
paragraphs etc.

* Again unsupported in Internet Explorer

Attribute Selectors

 Allows matching of elements in the DOM based on
their attributes

selector[attribute name]{...}

- Matches elements that have the attribute regardless of value
selector[attribute name=value]{...}

- Matches elements whose attribute matches the given value
selector[attribute name~=value]{...}

- Matches elements whose attribute value (viewed as a space
separated list) contains the given value

selector[attribute name|=value]{...}

- Matches elements whose attribute value (viewed as a hyphen
separated list) first entry matches the value. Primarily for the lang
attribute (en-us, en-gb etc.)

Class Selectors

* Matches all elements who have the
specified class assigned to them

p.italic { font-style:italic; }

- HTML specific version of [class~=value]

ID Selectors

o Selector matches the element with a
specific id

#id { font-style:italic; }

* Multiple elements with same id can cause
unpredictable results (shouldn't happen)

Universal Selector

 Universal Selector matches all elements in
the DOM

* { font-style:italic; }
* Can be ignored in class selectors

.1talic { font-style:italic; }
* i1talic { font-style:italic; }

Pseudo-selectors

* Many different pseudo-selectors

:first-child :last-
child :1ink :visited :active :h
over :focus :not :first-
line :first-letter :nth-child

- Support is limited

Specificity

» Specificity determines what style rules take
precedence

» Each type of selector has a weighting that
IS used to calculate the specificity

Type Selector 1
Class Selector 10
ID Selector 100

- When 2 rules have the same specificity the
last encountered rule Is used.

Specificity Examples

div p { color: red; }

p { color: blue; }

p has a specificity of 1 (1 HTML selector)
div p has a specificity of 2 (2 HTML selectors)

Even though p came last p elements inside divs will be coloured red as it is
more specific

Other Examples

. . tree has a specificity of 10 1 class

e div p.tree has a specificity of 12 2 HTML > 1 class
 #baobab has a specificity of 100 11D

e body #content .alt p=112 1HTML>11ID>1Class>1HTML

Grouping

» Stylesheets allow you to apply the same
rule to multiple selectors

selector,selector, ..., selector {}

hl,p.header, #title {color:#f0f}

Shorthand Properties

« CSS Syntax is quite open
* Properties can be specified in many ways

» Be aware of the best fit to what you are
trying to achieve

p A

border-left-width:4px;
border-left-style:solid;
border-left-color:red;
border-top-width:1lpx;
border-top-style:solid;
border-top-color:red;
border-right-width:1lpx;
border-right-style:solid;
border-right-color:red;
border-bottom-width:1px;

border-bottom-style:solid;

border-bottom-color:red;

=

}

border : lpx solid red;
border-left-width : 4px;

limportant

* The limportant declaration at the end of a style
rule specifies it should take precedence over any
other rule regardless of specificity or location

<p class="blue” id="para”>This text</p>

p{color:red'important; }
p.blue {color:blue;}
#para {color:black}

 |f more than 1 rule is marked important is applied
the last encountered is applied

Javascript Overview

Overview

“Javascript is a dynamic, weakly typed,
prototype-based language with first-class
functions”

The design of JavaScript was influenced
- by Java, which gave JavaScript its syntax,

- by Self, which gave JavaScript dynamic objects with prototypal
inheritance,

- and by Scheme, which gave JavaScript its lexically scoped
functions.

- JavaScript's regular expressions came from Petrl.

Common Concerns

| would have to learn another language
Javascript is slow

Javascript is temperamental in cross-
browser environments

“If you were to take your favourite
programming language, strip away the
standard libraries and replace them with the
DOM, you would hate it.”

Javascript: The Good, The Bad & The Ugly

Unearthing the Excellence in _JavaScript

i)

JavaScript:
The Good Parts

O,RElLLYO‘ ’ hHOO’, PRESS Douglas Crockford

The Awful Parts

— Global Variables, Scope, Semi-
Colon Insertion, Reserved Words,
Unicode, Typeof, parselnt, +,
Floating Point, NaN, Phony Arrays,
Falsy Values, hasOwnProperty,
Object

The Bad Parts

— ==, with Statement, eval, continue
Statement, switch Fall Through,
Blockless Statements, ++/--, Bitwise

Operators, Typed Wrappers, new,
void

The Good Parts

— 18t Class Functions, Prototypal
Inheritance, Object & Array Literal,
Closures

The Awful Parts

Global Variables Scope

* Obvious issues with * Block syntax but no
global variables block scope

* All compilation units I
' unction fun () {
loaded into global scope L (x > 0)

» Implied Global variables ST

are hard to track alert (v) ;

var a = 'a';

function fun () {
b = lbl;
window.c = 'c'
}

alert(a + b + ¢);

The Awful Parts

Semicolon Insertion typeof

Semicolons are semi- + typeof is broken
optional

typeof 9 // '"number'
function func (x) typeof {} // 'object'
{ typeof 't' // 'string'

var res = false;

typeof undefined // 'undefined'
if(x > 7)

{ typeof null // 'object'

res = true; typeof [] // 'object'
} typeof new Array() // 'object'

return

{ | This makes type

. detection unreliable

}

alert (func (3) .result) ;

The Bad Parts

==/1= +

« Perform type coercion and e Both adds and

therefore unpre_dlctable concatenates
unless comparing same

* Determining which

ones it will do is tricky

console.log(l + '1'");
console.log(1l + 1);
console.log(l + 1 + '1' + 3);

false == 'false'
false == '0"
false == undefined console.log(l + 1 + +'1" + 3);
false == null

null == undefined

"' \t\r\n " == 0

The Bad Parts

eval
« evalis evil

In Closing

Javascript is very misunderstood and
greatly misused.

Javascript has a lot of awful or bad features

All of these features are entirely avoidable
and a bit of good practise and habit will
help avoid them.

The rest of the course will highlight the
good parts and introduce best practise
approach to getting good results.

Javascript Fundamentals

Character Set

» Javascript programs are written using the
Unicode character set

» Characters represented internally as 2
bytes

» This larger character set should be
considered when testing low level
functionality

Whitespace & Line Breaks

» Javascript ignores tabs, spaces and new
lines between tokens

« However be careful of line breaks when
dealing with optional semicolons

Optional Semicolons

« Semicolons are optional provided you have
one statement per line

x = 'one'
y = '"two'
x = 'one'; y = '"two'

« Semicolons automatically inserted at end of
lines that are determined to be complete
statements.

return return;

true E:j> true;

Comments

» Both single and multiline comments
supported

« C++/Java style comments
 Multiline comments cannot be nested

// This is a single-line comment.
/* This 1s also a comment */
// and here is another comment.

/*
* This 1s yet another comment.
* It has multiple lines.

*/

|dentifiers

 First character must be a letter, or $
 Remaining characters must be letter, digit,

or$

 Must not be the same as a word reserved
by the language

Reserved Words

break do if switch typeof
case else in this var
catch false instanceof throw void
continue finally new true while
default for null try with
delete function return

* The following words are also reserved but never used
In the language

abstract double goto native static
boolean enum implements package super

byte export import private synchronized
char extends int protected throws

class final interface public transient
const float long short volatile
debugger

Data Types and Values

« Javascript defines a simple set of data
types

— 3 primitive types Numbers, Strings & Booleans
— 2 trivial types null & undefined

— 1 composite type Object

— 1 special type Function

null & undefined

* null and undefined are similar but different

* They are equivalent but considered
different types

null == undefined // true
null === undefined // false

Control Structures

switch (bork) {
case 1:

case 'whee':

}

case false:
while (bork) {

default:

}

try {

} catch(err) {
for (var element in array of elements) ({

}
}
do {

} while (bork) ;

Comparison

Non-equality comparison:
Returns true if the operands are
not equal to each other.

Non-equality comparison without type
conversion:
Returns true if the operands are not
equal OR they are different types.

Equality comparison:
Returns true when both operands are
equal. The operands are converted to
the same type before being compared.

Equality and type comparison:
Returns true if both operands are
equal and of the same type.

Guard & Default

» Guard prevents exceptions being thrown on null
object calls

var user = null;
var loggedIn = false;
function getUserName () {
return loggedIn && user.userName

}

» Default ensures a default value is returned if a
property is null

function printArgs (mandatory, optional) {
optional = optional || “default”;
/* do some stuff */

}

printArgs (1) isthesameas printArgs(l,’default’)

Adding JavaScript

Two ways to include JavaScript on the page

<script src=“external.js”></script>
<script>

// code goes here
</script>

JavaScript is executed as it is encountered even
If page isn’t fully finished.

Beware of accessing elements before the page is
loaded.

JavaScript should be added as low down the
page as possible.

No need to specify script type.

Numbers

Overview

No distinction between integers and floating
point numbers

All numbers represented in 64bit floating
point format (IEEE 754)

Floating point arithmetic isn't accurate and
can't be relied upon

0.1 + 0.2 != 0.3

Integer arithmetic is completely accurate

Integer Literals

* Integers within the extensive +/- 2°3 can be
accurately represented

* |Integer literals are in base-10 by default

Hexadecimal & Octal Literals

. é\hexadecimal (base-16) literal begins with
X

* An octal literal (base-8) begins with O but
isn't 100% supported

* Never write a literal beginning with O

Oxff // 15*%*16 + 15 = 255 (base 10)
OxCAFE911

0377 // 3*64 + T7*8 + 7 = 255 (base 10)

Floating Point Literals

* Represented using traditional syntax
(decimal point), or

« Using exponential syntax
[digits][.digits][(E | e)[(+ | -)]dlgits]

 Large numbers can only ever be assumed
to be an approximation

3.14

0.789

.333333333333333333

6.02e23 // 6.02 x 1023
1.4738223E-32 // 1.4738223 x 10732

Infinity

» Attempting to work with numbers outside
the range supported will yield a constant

Infinity/-Infinity

var result=2;

for (i=1; result!=Infinity; i++) {
result=result*result;
console.log(i+':"+result);

}

 Division by 0 will also yield Infinity

console.log(255/0); // Outputs: Infinity
console.log(-255/0); // Outputs: -Infinity

NaN

Any unsuccessful numeric operation results in a
special value

NaN // Not a Number

NaN is always unequal to all other numbers and
itself.

If you would like to make sure the result was a
number and not the NaN error condition use

isNaN (value)

NaN always evaluates to false

Arithmetic Operations

* Typical operations

Addition (Concatenation)
Subtraction (Unary conversion)
Multiplication

Division

Remainder/Modulus
[pre/post]increment
[pre/post]Decrement

parselnt(string, [radix])

* Global function
* Accepts a string and converts it an integer

 Reads from the 1st character to the 15t non
numeric character

* Optionally supply a radix to use as the base
for conversion. Default depends on string

« Always specify a radix of 10

parseFloat(string)

* Global function
» Extracts floating point numbers from strings

« Same rules as parselnt except will parse
past decimal point

The Number Object

* Provides a typed wrapper around literals

« Should never be used directly as it effects
comparisons and truth tests

var numericLiteral = 0;

var numericObject = new Number (0) ;
if (numericLiteral) {

// never executed 0 == false

}
if (numericObject) {

// always executed object is defined

}

 Number methods are copied to numeric
literals but properties aren't

Number Object: Properties

* Available ONLY to the Number object itself
and not any children or literals

MAX VALUE

MIN VALUE

NaN

NEGATIVE INFINITY
POSITIVE INFINITY

Always the largest possible numeric value.
Always the smallest possible numeric value.
Value returned on Not A Number errors.
Value returned on out of range -ve numbers.
Value returned on out of range +ve numbers.

Number Object: Methods

* Available on numeric literals as well as the
number object

« Some of these functions are only supported
in IE 5.5+/FF1.5+

toExponential([places])

return a string representation of the number
as an exponent

If you provide a number in the first
argument, this method will return only the
specified number of decimal places.

If you are using a numeric literal then you
should provide a space between the
number and the method. If your number
has no decimal you can also add one
before calling the method.

toFixed([digits])

This method attempts to return a string
representation of the number as a non-

exponent with [digits] numbers after the
decimal.

Handy for working with currency
IE 5.5 buggy implementation

digits must be in range of 0-20 other wise a
RangekError is thrown

Defaultis O

toLocaleString()

« Attempts to format the number to meet the

various regional preferences for displaying
numbers

» Can result in formatting including commas
etc if computer supports it.

toPrecision([precision])

will return a string with [precision] digits
after the decimal point.

precision must be a value greater than 0.
If no precision value is passed, this method
behaves like toString().

Like toFixed(), this method will round up to
the next nearest number.

* A precision greater than numbers precision
will result in inaccuracy

toString([base])

* Outputs the number as a string

 Base is automatically determined in the
same manner as a literal, or,

» Supply base as an argument

valueOf()

* simply returns the number as a string.

* Unlike the toString() method, valueOf does
not allow you to base conversions.

* The string output is always equal to the

number as it's represented in base 10.

Math

» Javascript provides a global object
specifically for handling math related work

* Has become increasingly popular with the
introduction of canvas

* All methods are accessed in a staic fashion
via the constructor, e.qg.

Math.floor (12.233)
Math.round (21312.22)
Math.sin (y)

Strings

Overview

Can be represented as a literal or an object
Object methods are available to literals

Try and avoid the use of the Object over
literals

Passed by value to functions

Unlike other languages there is no char
class

String Literals

» String literals can be declared using either
single or double quotes

var one = "abcdefghijklmnopgrstuvwxyz";
var two = 'abcdefghijklmnopgrstuvwxyz';

* To use quotes in a string either mix & match
or escape them

var one =
var two = '"";

String Properties

 All strings have a single property length

var alpha = "abcdefghijklmnopgrstuvwxyz";
var beta = new String("abcdefghijklmnopgrstuvwxyz") ;

alpha.length // 26
beta.length // 26

String Methods

« String methods can be classed into two
distinct groups

General Methods: Use strings to perform
operations

RegExp Methods: Use Regular Expression
objects to perform operations

These will be explored more in the next section

indexOf(value], startindex])

 Returns the index of the first occurrence of
the value.

* Returns -1 if not found
» Optional starting index to determine origin
of search

'abc'.indexOf ('ab') // 0
'abc!'.indexOf ('d"'") // -1
'abcabc'.indexOf ('cab') // 2

'abcabc'.indexOf ('abc', 3
'abcabc'.indexOf ('cab', -1

replace(pattern, replacement)

* Returns a string with the first instance of
pattern replaced with replacement

* pattern can be either a string or regular
expression (see next section)

“abc” .replace (Ma”, T // ab
“abc”.replace (Ma”, 'd'") // dbc
“abcabcabc”.replace (Yabc”, 'def') // defabcabc

split(delimiter [,limit])

* Very powerful and often used string method

 Splits a string into an array of strings _
itemised based on the delimiter specified

* Optional limit argument restricts the size of
generated array

,c,d' . .split (', ") //
,c,d'.split(';") //
yC,d, osplit (', ") //

,c,d'.split(',"', 2) //

substring(index [, endlndex])

» Returns part of original string based on
Index

* |f no endindex specified returns entire
string from index to end

* If endindex is less than index then
arguments are internally reversed

'abcdef'.substring(2) // 'cdef'
'abcdef'.substring (2, 5) // 'cde'
'abcdef'.substring (5, 2) // 'cde'

charAt
charCodeAt
concat
fromCharCode
lastIndexOf
slice

substr
of characters

toLowerCase
toUpperCase
valueOf

Other Methods

Returns the character at index.

Returns the Unicode Value.

Joins Strings (same as +)

Creates a string from the supplied unicode integers.
Finds last position of a substring.

Extracts a substring starting at the index.

Like substring except 2"¢ argument indicates number

Converts the string to lower case
Converts the string to upper case
See toString()

Regular Expressions

Overview

* Regular Expressions are nothing unique to
Javascript

« Javascript regular expressions are a less
powerful subset of real Regular
Expressions

* Reqgular Expressions, while more powerful,
can be slower for simple tasks compared to
straight string manipulation

* A Regular Expression is simply a special
object type.

Notation

* Regular Expressions can be declared as
either an object or a literal

new RegExp (pattern [, flags]) // Object
/pattern/[flags] // Literal

new RegExp ('abc') isthe same as /abc/
new RegExp ('abc','gi') isthesame as /abc/gi

Flags

* A string representing control flags can be
passed to Regular Expressions

* The three flags that can be set include

g Global — if set returns an array of matches rather than 1st
i Ignore Case — if set ignores case during matching
m Multiline — matching also handles line breaks

 The flags option is just a string of the
required combination — 'gin', 'gi, '

RegExp Methods

* The RegExp object (and literal) have two
methods that can be used.

RegExp.exec (string), and,
RegExp.test (string)

» exec() applies the regular expression and
returns an array of matches (g flag has no
effect)

* test() returns true if the RegExp matches at
least once, otherwise false

String Methods

replace () and split () both supportregular
expressions as well as strings

This allows for replace-all functionality

String.replace (/pattern/g,value)

match () and search () both accept RegExps

where match returns an array of all matches in the
string and search returns the index of the first match

"Watch out for the rock!".match(/r?o0r?/qg) // ['o','or','ro']
"Watch out for the rock!".search(/for/) // 10

Both match and search are at least 2 times slower
than their plain string indexOf counterpart.

Dates

Overview

A Date in Javascript is just a special class
of object

Can be constructed in a number of ways

Represented internally as the number of
milliseconds from 18t January 1970

Dates passed and assigned by reference

var datel new Date ()
var date? datel

date?2.setYear (2000)

console.log(datel,date?)

Construction

* There are multiple ways to construct a Date
object

)

milliseconds)

new Date
new Date

new Date(string)

(
(
(
(

new Date(year, month/[, day/[, hours/[, minutes/[, seconds/[, ms]]]]])

» Calling Date() without new results in a
String representation of the current time

Time Zones

» By default created dates are set to the
browsers time zone.

» By default dates are output in the users
time zone regardless of how they where
created (e.g. with a different time zone)

» Javascript Dates have UTC (Coordinated
Universal Time) functions (essentailly GMT)
for accessing GMT/UTC equivalent dates

Accessing Date Parts

* The Date object provides an API for reading
and writing all parts of a date

¢ Getters and Setters come in 2 flavours
— Adjusted (to UTC/GMT):

getUTC<date part>
setUTC<date part>

— Unadjusted (in current time zone)

get<date part>
set<date part>

Date.parse(str)

Parses a string representation of a date
and returns the number of milliseconds
since 01/01/1970 00:00:00

Unparsable dates result in NaN being
returned

Will always accept dates in IETF format
e.g.

Wed, 18 Oct 2000 13:00:00 EST

Other date formats change between
browsers but major browsers all support
simple formats based on time zone e.g.

dd/mm/yyyy

Other Date Functions

toDateString
toGMTString
toString
toTimeString
toUTCString
UTC

valueOf

Outputs the date (no time) as a string.
Outputs the date adjusted to GMT.
Outputs the date as a string
Returns the time as a string.
Returns the date as a GMT string.
(Static) Date as a UTC timestamp
See toString()

Objects & Arrays

Objects

Overview

« Composite dataty Pes made up of other
types (properties/tunctions),

» Unordered collection of propertles each of
which has a name and value

* new Object() notation is officially
deprecated

* Created using literal expression — a list of
comma separated name/value pairs

» Passed/Assigned by reference

Object Literals

Comma separated list of name/value pairs enclosed
in a block -{..}

Each property name is a String or Javascript identifier
Quotes required for reserved words

{1}
{x:7}

var objl
var obj2
var obj3 {x:7, y:'606"'};
var obji4 {
ref : objl,
“class” : 'object!'

}

As functions are 15t class objects they are a valid
property of an object

var obj = { doStuff:function (x) {return x+1;} 1}

Accessing Properties

* Object properties can be accessed in 2
ways
—dot notation object.property
—via indexed name object [property name]

* The second method is useful when
accessing properties dynamically

function callFunc (obj, func) {
return obj[func] ()

}

* Accessing properties that do not exist result
iIn undefined being returned

Error Objects

» Javascript defines a number of error
objects that are thrown when an error

%)CCUFS. These include but are not limited
O,

Error, EvalError, RangeError, ReferenceError,
SyntaxkError, Typekrror, URIError

 Error objects have at least a message
property. Custom object can be used

{message:'An error occurred'}

JSON

JavaScript Object notation
Subset of Object type

Composed of only primitive literals, arrays and
other JSON objects

Alternative to XML data transfer
Much simpler and more inline with JavaScript
Viable use of eval ()

var result = "{success:true, payload:[2,4,5]}"; // from server
var parsed = eval (" (" + result + ")"); // parenthesis fix

console.log (parsed) ; // Object success=true payload=[3]
console.log(parsed.success); // true
console.log (parsed.payloadl[l]); // 4

Arrays

Overview

* An arra%_is a collection of data values, just
as an object is

* Where objects have names arrays have
numbers or indexes associated with the
properties

* Arrays have no real sequence or upper
bounds

* Arrays can be created as objects or literals

* The object notation provides no benefits
and confuses matters. Use literals.

» Passed/assigned by reference

Array Literals

» Created like an object but with square
brackets [] and no need to name the
properties

var X ; // empty array
var y ;213 // initial values
var t , // mixed types

Accessing Values

* Values are accessed using their index and
the [] notation from Objects

* If no value exists undefined is returned
* No need to add items sequentially

var x = [];
= 'test'; // x = [undefined, undefined, 'test']
x[3] // undefined

length Property

* Every array has a length property
* Always starts at zero
* Not read-only

var x = [1,2,3,4,5,6,7,8,9,101];

x.length // 10

X.length = 5;
X // [1,2,3,4,5]

Array Methods

concat Joins multiple Arrays

join Joins all the Array elements together into a string.
pop Returns the last item and removes it from the Array.
push Adds the item to the end of the Array.

reverse Reverses the Array

shift Returns the first item and removes it from the Array.

slice Returns a new array from the specified index and length.
sort Sorts the array alphabetically or by the supplied function.
splice Deletes the specified index(es) from the Array.
toString Returns the Array as a string.

unshift Inserts the item(s) to the beginning of the Array.
valueOf see toString

Functions

Overview

« Functions are 15t class objects in Javascript
« Passed around and referenced as variables

» Can be passed as arguments to other
functions

* Their scope can be altered

Defining Functions

* There are 2 ways to define functions.

/* named function */
function func (named arguments) {
function body

}

/* anonymous function */
function (named arguments) {
function body

}

* The second case can be assigned to a variable name
or passed anonymously as an argument to another
function

* Afunction as an argument is called a Lambda
function in the functional programming world

Defining Functions

* There is another way to define functions

new Function ([paraml, paramZ,...paramN], body)

 Thinly disguised eval() and should be
avoided at all costs.

» Slower, error prone, insecure and look
stupid.

Scope

 Javascript is lexically scoped, meaning that
at any time in the execution the statement
has access to all it's own and ancestors
variables

* Two types of scope — functional and global
* No block scope which confuses developers

 Variables defined inside a function are
private to that function and its sub-functions
or children

* Leaving out var result in a new variable
being created in the global scope

Context

Within each function there is a special
variable called this

this points the the “owner” of the function

Usually it is the parent object who becomes
this

Populated automatically but can also be
manually manipulated

Function Properties & Methods

» Each function, as it is an object, has a
number of properties and methods

arguments
length
constructor
prototype

apply
call
toSource
toString
valueOf

pseudo-array of arguments passed to the function
the number of named arguments expected
function pointer to the constructor function.

allows the creation of prototypes.

A method that lets you easilly pass function arguments.
Allows you to call a function within a different context.
Returns the source of the function as a string.

Returns the source of the function as a string.

Returns the source of the function as a string.

arguments

Functions accept a variable number of arguments
Similar concept to Java's method overloading
%Jnspecified arguments get the assigned undefined
ype

They can be named variables or accessed via the
arguments object

The arguments object is not a real array you cannot
directly perform array operations on it

It has 2 properties

length Stores the number of arguments

callee Pointer to the executing function (allows functions to
recurse)

apply()/call()

 Allows you to apply a method of another object in the
context of a different object

function.apply(thisArg[, argsArray])
function.call (thisArgl[, argll, arg2([, ...111);

thisArg

Determines the value of this inside the function. If thisArg is null or
undefined, this will be the global object.

argsArray

An ar%ume.nt array for the object, specifying the arguments with which
the function should be called, or null or undefined if no arguments
should be provided to the function.

call() takes a variable number of arguments rather than an array

Self Executing Functions

* |tis E)_ossible to declare an anonymous
function and execute it simultaneously

» Self executing functions prevent global
namespace pollution and guard isolated
code from external side effects

« Simulates block scope

(function () {
var x = 7; // private
window.x = 'value';

1) (O

Closures

a closure is a that is evaluated In
an environment contamln one or more

ci e% the function
can access these varlab es. Or,

A closure is ¢created when varlables of a
function continue to exist when the function
nas returned.

L.e. a function is defined within another
function, and the inner function refers to
ocal variables of the outer function.

You need to be careful when handling
closures as they are a primary cause of
memory leaks

http://en.wikipedia.org/wiki/Function_%28programming%29
http://en.wikipedia.org/wiki/Bound_variable

Object-Oriented Javascript

Overview

JavaScript isn’t technically OO but it is
object based

Classless
Prototypal Inheritance

Classical Inheritance possible but it

essentially forcing the language to behave
iIn a way it wasn't intended.

Don’t get too caught up on this topic.
Included for clarity

Simple OO

var x = {
firstName: ‘James’,

lastName: ‘Hughes’,

getName: function () {
return this.firstName + ' ' + this.lastName;

}

var y = {
firstName: ‘Someone’,

lastName: ‘Else’,

getName: function () {
return this.firstName + ‘' ' + this.lastName;

}

console.log(x.getName ()) ;
console.log(y.getName ()) ;

Constructor Functions

Functions always return a value.

If no return statement specified undefined is
returned

When invoked with new functions return an
object — this. Represents the scope of
the newly created object

Able to modify this before it is returned

Actual return value is ignored
Be careful omitting the new operator

Better Simple OO

function Person(first, last) {
this.firstName = first;
this.lastName = last;
this.getName = function () {

return this.firstName + ' ' 4+ this.lastName;

new Person (“James”, ”"Hughes”) ;

var X
new Person (“Someone”,”Else”);

var y

console.log(x.getName ()) ;
console.log(y.getName()) ;

Type Detection

function Person(first, last) {
this.firstName = first;
this.lastName = last;
this.getName = function () {
return this.firstName + ' ' + this.lastName;

}

var x = new Person (“James”,”Hughes”) ;

console.log(typeof x); // object
console.log(x instance Person); // true
console.log(x.constructor == Person); // true

prototype

The prototype property is a property of function
objects

Shared base Object representing properties
and methods of that type

Is “live” and can be extended to add functionality
(metaprogramming)

Prototype properties appear as properties of the
object itself (see hasOwnProperty)

Basis of the inheritance strategy in JavaScript

prototype

function Person () { function Person() {

this.name = null; this.name = null;
this.setName = function (n) {

this.name = n;

Person.prototype.setName = function (n) {

this.name = n

var x new Person /() ;

var y new Person();
var X new Person();

. var y new Person();
.setName = function(f,1l) {

this.name = £ + “ ™ + 1;
Person.prototype.setName = function (f, 1) {

this.name = £ + ™ » + 1;
.setName (“"James”, “Hughes”) ;
.setName (“*Other”, “Person”);

X.setName (“James”, "“Hughes”);

console.log(x.name) ; y.setName (“Other”, “Person”);
console.log(y.name) ;

console.log(x.name) ;

console.log(x.hasOwnProperty (VsetName”)) ; console.log (y.name) ;

console.log(x.hasOwnProperty (VsetName”)) ;

~_proto

Objects have a secret link to their
constructors prototype proto

Some browsers do not expose this

constructor.prototype == proto

This creates a constructor chain.

Property resolution searches up this chain
all the way to the base object

Inheritance

function Rectangle () { function extend(parent, child) {
this.height = 0; for (var i in parent) {
this.width = 0; child[i] = parent[i];
}
return child;
function Rectangle3D () {
this.depth = 0; Other

this.prototype = new Rectangle(); . .
is.p YP w gle() extend (Rectangle,Rectangle3D) ; considerations

should be made in
this function

What if child
already has a
property?

Rectangle3D.prototype = new Rectangle(); var rzd = new Rectangle();

var r2d = new Rectangle(); height = 1;
width = 2;

r2d.height = 1; Should parent

r2d.width = 2; properties include
r3d = new Rectangle3D(); prototype properties

r3d = new Rectangle3D(); etc?

. .height = 3;
r3d.height = 3; .
r3d.width = 4; .width = 4
r3d.depth = 5; .depth = 5

.
14

.
14

console.log(r2d, r3d); console.log (r2d, r3d) ;

Patterns

 Many common design patterns can be
used or at least emulated in Javascript

* Access Levels — public, private, protected

* Object Patterns — Singleton, Chaining,
Factory, Observer

Public Properties/Methods

/* VIA CONSTRUCTOR */
function MyObject (param) {
this.member = param;
this.func = function () {
return member;

}

/* VIA PROTOTYPE */
MyObject.prototype.getMunged = function ()
return this.member + new Date();

}

var x = new MyObject (“arg”);
x.member; x.func(); x.getMunged() ;

Private Properties/Methods

/* VIA CONSTRUCTOR */
function MyObject (param) {

this.member = param;

var privateMember = 7;
function privFunc () {

return this.member + privateMember;

var x = new MyObject (‘test’);

x.member (); x.privateMember; x.privFunc()

Privileged Properties/Methods

/* VIA CONSTRUCTOR */
function MyObject (param) {
this.member = param;

var privateMember = 7;
function privFunc () {

return this.member + privateMember;

}

this.priviledged = function () {
return privFunc ()

}

var x = new MyObject (‘test’);

X.member; x.priviledged()
X.privateMember; x.privFunc/();

Singleton Pattern

var MySingleton = (function () {
var privatePropl = “one”;
var privateProp2 = “two”;

function privateFunc () {
return new Date()

}

return {
publicFunc : function() {
return privateFunc() + privateProp2;

b
publicProp : “three”

b) O

MySingleton.publicFunc () ;
MySingleton.publicProp;
MySingleton.privateFunc() ;
MySingleton.privateProp;

Chaining

Array.prototype.methodl function () {
this.push (“Yone”) ;
return this;

Array.prototype.method? function () {
this.push (“two”) ;
return this;

Array.prototype.method3 function () {
this.push (“three”);
return this;

[‘oldl’,’o0ld2’,’0ld3’"] .methodl () .method2 () .method3 () ;

Factory Pattern

var XHRFactory = (function () {

return {
getInstance : function() {
try{
return new XMLHttpRequest ()
}catch (e) {
try{
return new ActiveXObject ('Msxml2.XMLHTTP')
}catch (e2) {
return new ActiveXObject ('Microsoft.XMLHTTP')

b)) O

var xhr = XHRFactory.getInstance()

Observer

function Observer () {
var observers = [];

this.subscribe = function (callback) {
observers.push (callback)

this.publish = function (msg) {

for (var 1=0; i<observers.length;i++) {
observers[i] (msqg);

}

var eventObserver = new Observer ();

eventObserver.subscribe (function (msqg) {

console.log("callback triggered: " + msq)
}) g

eventObserver.subscribe (function () {
console.log("another callback triggered")

}) s

eventObserver.publish ("a publish message");

The Document Object Model

Overview

* Alanguage-neutral set of interfaces.
* The Document Object Model is an API for

HTML and XML documents. It provides a
structural representation of the document,
enabling you to modify its content and

visual presentation.

» Essentially, it connects web pages to
scripts or programming languages.

HTML Document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4d/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type“ content="text/html; charset=UTF-8" />
<title>ToDo list</title>
</head>
<body>
<div>What I need to do.</div>
<p title="ToDo list">My list:</p>

Finish presentation</1i>
Clean up my home.</1i>
<1i>Buy a bottle of milk.</1li>

</body>
</html>

Elements

HTML is essentially a focused version of
XML

Elements make up the DOM structure
Nestable

Can be validated using various DTD’s
(Strict and Loose)

« DOM Elements provide properties and
functions like any other object in JavaScript

Element Attributes

nodeName
nodeValue
nodeType
parentNode
childNodes
firstChild
lastChild
previousSibling NEXTSIBUNG " ™\ NEXT SIBLING ’(L
nextSibling \ P 41 PREVIOUS SIBLING P ‘ PREVIOUS SIBUNG | P :
attributes "
ownerDocument

2e) ‘ l“\ ff.
NG

‘.r_ \

(5}
(]
o
=
—
=
L
o
g

Node Types

NODE ELEMENT(1) : This node represents an element.

NODE_ATTRIBUTE(2) : This node represents an attribute of an element. Note that it
is not considered a child of the element node.

NODE_TEXT(3) : This node represents the text content of a tag.

NODE_CDATA _SECTION(4) : This node represents the CDATA section of the XML
source. CDATA sections are used to escape blocks of text that would otherwise be
considered as markup.

NODE_ENTITY_ _REFERENCE(5) : This node represents a reference to an entity in the
XML document.

NODE_ENTITY(6) : This node represents an expanded entity.

NODE_ PROCESSING INSTRUCTION(7) : This node represents a processing
instruction from the XML document.

NODE_COMMENT(8) : This node represents a comment in the XML document.
NODE_DOCUMENT(9) : This node represents an XML document object.

NODE_DOCUMENT TYPE(10) : This node represents the document type declaration
of the <IDOCTYPE> tag.

NODE_DOCUMENT_FRAGMENT(11) : This node represents a document fragment.
This associates a node or subtree with a document without actually being part of it.

NODE_NOTATION(12) : This node represents a notation in the document type
declaration.

Finding Elements

<input type="text" id="message" value=“Value”/>

<ul id="list">
Item 1</1i>
Item 2</1i>
Item 3</1li>

var items = document.getElementsByTagName ("11i");
var msglnput = document.getElementById ("message")

* You should never have more than one
element with the same ID. It allowed but

unpredictable (usually the first found
though)

DOM Manipulation

var item = document.createElement ("11");
var text document.createTextNode (message) ;

item.appendChild (text) ;

parent.appendChild(item) ;
parent.insertBefore (someNode, item);

parent.removeChild (item) ;

InnerHTML

parent.innerHTML = parent.innerHTML + ("<l1li>"+message+"</1i>");

Why go through the trouble of creating
nodes?

More efficient
Easier

Not part of official standard but fully
supported

But problems lurk

InnerHTML Issues

Always destroys contents of element even when
appending

_eads to memory leaks (won’t remove event
nandlers etc)

Pure String manipulation always has it's issues
No reference to the created elements

Some browsers prevent innerHTML on some
elements (IE & <tr> elements for example)

Comparison

var 1ltem = document.createElement ("11");
item.appendChild (document.createTextNode (Yitem”)) ;
parent.appendChild (item) ;

VS

parent.innerHTML += “item</1i>";

Document Fragments

Allows work “off-DOM” on multiple elements

Document Fragments cannot be appended to
DOM

Child elements automatically appended instead
Provide a performance enhancement

var frag = document.createDocumentFragment () ;
for(var 1 = 0, p; 1 < 10; i++) |
p = document.createElement('p');
p.appendChild (document.createTextNode (
'"Paragraph '+ (i+1)
));
frag.appendChild (p) ;
}

document .body.appendChild (frag) ;

JavaScript API

* The window object is represented as a
large object with properties and methods
for accessing parts of the DOM

* |t is huge and for the most part you won't
use directly

 http://www.howtocreate.co.uk/tutorials/
Javascript/javascriptobject

http://www.howtocreate.co.uk/tutorials/javascript/javascriptobject

Events

Overview

» Javascript can be said to be event driven
» Events for the heart of all Ul interactions

* The event model is the most inconsistent
part of Javascript in Cross Browser
situations

Netscape Model

 |ntroduced in Netscape 2

* Inline syntax

« Syntax still used today as it is guaranteed to work
« Cause very tight coupling of model and controller

 Ability to reference these events in javascript

document.getElementById(‘'a-link’) .onclick = function() {alert(‘click’)}
document.getElementById (‘a-1ink’) .onclick() // trigger event

Modern Event Models

Increase in number of available event
types

New registration model (entirely through
JavaScript)

Event Observation Pattern supporting
multiple events on the same element

Inconsistent model across browsers

W3C Event Phases

Document

v v
<html>
I A
ca v |
pture <body> bubbling
phase A phase

(1))
- Y

<table>

!

<tbody>

A

Event Listener Registration

function listen(element, event, callback) {
if (element.addEventListener) {
/* ALL NON-IE */
element.addEventListener (event, callback, false);
} else {
/* IE */
element.attachEvent ("on" + event, callback);

}
}

« Creates a simple normalized event model across
browsers.

« Some edge cases not catered for (browser specific
events etc)

« The scope of the callback (this) is the element that
triggered the event

Available Events

Attribute

The event occurs when...

onabort

Loading of an image is interrupted

onblur

An element loses focus

onchange

The content of a field changes

onclick

Mouse clicks an object

ondblclick

Mouse double-clicks an object

onerror

An error occurs when loading a document or an image

onfocus

An element gets focus

Ol o0o|lo|lOo|lO|lO|©]| Q0

onkeydown

A keyboard key is pressed

P
[¢)

onkeypress

A keyboard key is pressed or held down

onkeyup

A keyboard key is released

onload

A page or an image is finished loading

onmousedown

A mouse button is pressed

onmousemove

The mouse is moved

onmouseout

The mouse is moved off an element

onmouseover

The mouse is moved over an element

onmouseup

A mouse button is released

onreset

The reset button is clicked

onresize

A window or frame is resized

onselect

Text is selected

onsubmit

The submit button is clicked

onunload

The user exits the page

Wlw w| s~]|Ph|lWDOW|APRWLW W WW WA W|W|[>

Ol O|lO|lO|O©|O©W|O|©O©| O O]|©

http://www.w3schools.com/htmldom/event_onabort.asp
http://www.w3schools.com/htmldom/event_onblur.asp
http://www.w3schools.com/htmldom/event_onchange.asp
http://www.w3schools.com/htmldom/event_onclick.asp
http://www.w3schools.com/htmldom/event_ondblclick.asp
http://www.w3schools.com/htmldom/event_onerror.asp
http://www.w3schools.com/htmldom/event_onfocus.asp
http://www.w3schools.com/htmldom/event_onkeydown.asp
http://www.w3schools.com/htmldom/event_onkeypress.asp
http://www.w3schools.com/htmldom/event_onkeyup.asp
http://www.w3schools.com/htmldom/event_onload.asp
http://www.w3schools.com/htmldom/event_onmousedown.asp
http://www.w3schools.com/htmldom/event_onmousemove.asp
http://www.w3schools.com/htmldom/event_onmouseout.asp
http://www.w3schools.com/htmldom/event_onmouseover.asp
http://www.w3schools.com/htmldom/event_onmouseup.asp
http://www.w3schools.com/htmldom/event_onreset.asp
http://www.w3schools.com/htmldom/event_onresize.asp
http://www.w3schools.com/htmldom/event_onselect.asp
http://www.w3schools.com/htmldom/event_onsubmit.asp
http://www.w3schools.com/htmldom/event_onunload.asp

The Event Object

With the new event model an event object is
exposed

This gives information on the event
Inconsistent across browsers

Access to the event object differs between
browsers

— Global property window.event in IE
— Passed as first argument to callback in other browsers

Most libraries provide a normalised approach and
object

Event Object Properties

Event Delegation

Possible due to event capture/bubbling

Single event attached to common parent
node (even document)

Tolerant to dynamic elements and
iInnerHTML updates

Single function vs many identical functions

Less memory intensive (think long lists and
event rebinding)

See example (eventdelegation.html)

Ajax Principles

Overview

AJAX allows your application to talk to the server
without entire page refreshes

AJAX = Asynchronous JavaScript & XML

Can be synchronous (though often considered
extra work)

Response may not be XML

Can reduce redundant data transfer effectively
cutting network traffic

Can be achieved without the XMLHttpRequest
object

Early AJAX

This was AJAX before the AJAX buzzword

Uses a hidden iframe to communicate with
the server

Consistent across the browsers
Google Mail still uses this approach
Still used for multipart file uploads

IFRAME Example

<html>
<head>
<title>Hidden IFRAME Example</title>
</head>
<body>

<iframe name="serverComm" id="serverComm" style="display:none"></iframe>

<label for="myname">Name:</label><input id="myname" value="" type="text" />
<button id="answer">Go!</button>

<script>
document.getElementById ("answer") .onclick = function() {

document.getElementById ("serverComm") .src="iframecontent.html?name="
+ document.getElementById ("myname") .value;

/* allow screen repaint */
setTimeout (function () {
alert (serverComm.document.getElementById('serverData') .innerHTML) ;
}/O)/'
}
</script>
</body>
</html>

XMLHttpRequest

» Offers greater control over AJAX requests
 Abillity to detect errors and other events

« Handled slightly different between |IE and
other browsers.

XMLHttpRequest Properties

readyState - the status of the request
— 0 = uninitialized
1 = loading
2 = loaded
3 = interactive (not fully loaded) — useless?
4 = complete

responseText - String value of the returned data

responseXML - DOM-compatible XML value of returned
data

status - Numeric status code returned by server.
Example: 404 for "Not Found"

statusText - The text value of the server status.
Example: "Not Found"

XMLHttpRequest Methods

abort () - abort the current request
getAllResponseHeaders () - returns as a string all
current headers in use.

getResponseHeader (headerLabel) - returns value
of the requested header.

open (method, URL[, asyncFlagl[, userName][,
password]]]) -setup a call.

send (content) - Transmit data

setRequestHeader (label, wvalue) - Create or
change a header.

XMLHttpRequest Events

 onreadystatechange - event handler
that deals with state change (readyState

property)

Getting XMLHttpRequest

var XHRFactory = (function () {
return {

getInstance : function () {
tryf{

return new XMLHttpRequest ()
}catch (e) {

tryf

return new ActiveXObject ('Msxml2.XMLHTTP')
}catch (e2) {

try{

return new ActiveXObject ('Microsoft.XMLHTTP')
}catch (e3) {

return null;

}

b) O

var xhr =

XHRFactory.getInstance () ;

Sending a Request

var xhr = XHRFactory.getlInstance();

xhr.open ("GET", “iframecontent.html?name=% + name);

xhr.send (null);

» open() Is sets request asynch by default
so send() returns instantly

e Monitor the readystatechange event to
detect responses

Same-0rigin-Policy

« Early attempt at reducing XSS attacks
« Ajax Requests can only be made within the same domain otherwise they fail

« <script> tags don’t care about same origin policy, so....

<script>

try{
console.log ("before: ",window.$);

}catch (e) {
console.log(e);

}

var x = document.createElement ("script");
x.src="http://prototypejs.org/assets/2008/9/29/prototype-1.6.0.3.js";

x.onload= function () {
console.log ("after: ",window.$);
b

document .body.appendChild (x) ;

</script>

Detecting Response

xhr.open ("GET", “iframecontent.html?name=" + name) ;

xhr.onreadystatechange = function () {/* ASYNCHRONOUS */
if (xhr.readyState !'= 4) {
return;
}else{
alert (xhr.responseText) ;

xhr.send (null) ;

alert (xhr.responseText); /* SYNCHRONOUS */

Detecting Errors

xhr.open ("GET", “iframecontent.html?name=" + name) ;
P

xhr.onreadystatechange = function () {/* ASYNCHRONOUS */
if (xhr.readyState != 4) {
return;
Jelse(
if(xhr.status '= 200) {
alert (“Error: ” + xhr.statusText)
}else({
alert (xhr.responseText) ;

xhr.send(null) ,

if (xhr.status '= 200) {
alert (“Error: ” + xhr.statusText)
}else({
alert (xhr.responseText); /* SYNCHRONOUS */

Timing Out

xhr.open ("GET", "“iframecontent.html?name=" + name) ;
xhr.onreadystatechange = function () {/* ASYNCHRONOUS */

var timeout = setTimeout (function|() {
xhr.abort () ;

alert (“Request Timed Out”) ;
},10000) ;

if (xhr.readyState != 4)
return;
lelse(

clearTimeout (timeout) ;

if (xhr.status != 200) {

alert (“Error: ” + xhr.statusText)
lelse(

alert (xhr.responseText) ;

xhr.send(null) ;

POST Request

xhr.open (“POST", “iframecontent.html“);
xhr.setRequestHeader ('Content-Type', 'application/x-www-form-urlencoded') ;

xhr.onreadystatechange = function () {/* ASYNCHRONOUS */
if (xhr.readyState != 4) {
return;
jelsef
if(xhr.status != 200){
alert (“Error: 7”7 + xhr.statusText)
jelsef
alert (xhr.responseTlext) ;

xhr.send (“name=" + name),

Unobtrusive JavaScript

Progressive Enhancement

Rather than hoping for graceful degradation, PE builds documents
for the least capable or differently capable devices first, then
moves on to enhance those documents with separate logic for
presentation, in ways that don't place an undue burden on
baseline devices but which allow a richer experience for those
users with modern graphical browser software.

Progressive enhancement
Steven Champeon and Nick Finck, 2003

PE in JavaScript

« Build a Ul that works without JavaScript

« Use JavaScript to enhance that site to provide a
better user experience.

« Should always be able to use the site regardless
of device/platform

— Start with Semantic HTML
— Layer on some CSS to apply the site’s visual design

— Layer on some JavaScript to apply the site’s enhanced
behaviour

Why"?

There are legitimate reasons to switch it off
Some companies strip JavaScript at the firewall

Some people run the NoScript Firefox extension
to protect themselves from common XSS and
CSREF vulnerabilities

Many mobile devices ignore JS entirely

Screen readers DO execute JavaScript, but
accessibility issues mean that you may not want
them to

Characteristics of Unobtrusive JavaScript

No In-line event handlers

All code is contained in external javascript
files

The site remains usable without JavaScript
Existing links and forms are repurposed

JavaScript dependent elements are
dynamically added to the page

jQuery

Unobtrusive JavaScript

One Liner

JQuery is a fast and concise JavaScript Library
that simplifies HTML document traversing,
event handling, animating, and Ajax
interactions for rapid web development.
jQuery is designed to change the way that
you write JavaScript.

Why jQuery over XXX?

Unlike Prototype and mooTools
— it doesn’t clutter your global namespace

Unlike YUl it's succinct
— YAHOO.util.Dom.getElementsByClassName()

Unlike Dojo
— the learning curve is hours, not days

Unlike ExtJS
— the license isn’t an issue

— the foot print is negligible
Adopted by Microsoft & Nokia as their core client side library
Highly active and passionate community
Well documented (http://api.jguery.com)
Structured to be extensible

http://api.jquery.com/

jQuery Characteristics

Minimal namespace impact (one symbol)

Focus on the interaction between
JavaScript and HTML

(Almost) every operation boils down to:
— Find some elements
— Do things with them

Method chaining for shorter code
Extensible with plugins

Non-Polluting

* Almost everything starts with a call to the
JjQuery () function

e Since it's called so often, the $ variable is
set up as an alias to jQuery

* However, if you're also using another
library (such as Prototype) you can revert
to the previous $ function with

JQuery.noConflict () ;

No More window.onload

Almost all pages require some sort of -"when page is
loaded do x, y and Z”

window.onload = function(){ /* code */ }

Usual inline event problems

Code isn’t executed until entire document (including
iImages) is loaded not just DOM

JjQuery permits code to be executed as soon as the DOM
IS ready

Improves perceived responsiveness

$ (document) . ready (function () { S (function () {
/* CODE HERE */ /* CODE HERE */

1) ; 1) ;

JjQuery () /$ ()

* Overloaded behaviour depends on type of
argument
— Listen for DOM Ready events
— Select elements from the DOM
— Enhance a DOM element
— Create new DOM Nodes

» Usually returns another jQuery object (supports
chainability) which is essentially an array type
object enhanced with jQuery functionality

Selectors

* jQuery/$ accepts a CSS selector and
returns a collection of matching elements

(as a jQuery object)
CSS1,2 & 3 selectors supported (more so
than current browser implementations!)

Custom selectors available
Avalilable selectors can be extended
Support for very complex selectors

CSS Selectors

AR |)

S (
S('#nav')
S('div#intro h2")
S (

'"#nav 1li.current a')

CSS 2 & 3 Selectors

(rel]

[rel="friend"]
‘href”="http://"]
ulf#nav > 1i

#fcurrent ~ 11 (1i siblings that follow #current)
li:first-child

li:last-child

li:nth-chi1d (3)

Custom Selectors

:first, :last, :even, :odd

:header

:hidden, :visible

:1nput, :text, :password, :radio,
submit

:checked, :selected, :enabled, :dis
abled

div:has(a), div:contains (Hello),
div:not (.entry)

:animated

Adding Custom Selectors

* |f jQuery doesn’t have it, add it

/* v1.3+ approach*/
S.extend (jQuery.expr.filters, {
hasTooltip: function(e,i,m,a) {
return !!$(e).attr(Ntitle”);
}

});
Support for passing args

/* pre 1.3 approach */ //
S.expr[':'].hasTooltip = function(e,i,m, a) {
return !!$(e).attr(Ntitle”);

}

S('div:hasTooltip’)

jQuery Collections

« The jQuery/$ function returns a jQuery Collection
object

* You can call treat it like an array

$('div.section') .length
S('div.section') [0]
$S('div.section') [2]

 You can call methods on it:

S('div.section') .size ()
S('div.section') .each (function () {
console.log(this);

1) ;

Chainability

« Almost all jQuery functions (unless unnecessary)
return a jQuery collection object

 Ability to chain code making it simpler and
shorter

S('div.section') .addClass('foo') .hide () ;

« Complex collection filtering supported rather than
having to perform multiple selection

S(‘tbody’) .find(‘tr:odd’)
.css (‘background-color: #eee’)
.end ()
.find(‘tr:even’)
.css (‘background-color: #aaa’)

jQuery Methods

* JQuery provides methods to operate on
the returned collections

 These can be grouped into 4 main types

. Introspectors - return data about the selected
nodes

. Modifiers - alter the selected nodes in some way

. Navigators - traverse the DOM, change the
selection

. DOM modifiers - move nodes within the DOM

Introspectors

.attr('title'")
.html ()
.text ()
.css('color')
.1s('.entry')

Modifiers

attr('title', 'The first div')
.html ("New content"')
.text ('"New text content')
css('color', 'red')

Bulk Modifiers

S('a:first') .attr ({
title: 'First link on the page',
href : 'http://www.kainos.com/'
Y)

S('a:first') .css ({
color: 'red',
backgroundColor: 'blue'

b)) ;

Accessor Pattern

S (selector) .attr (name) gets

S (selector) .css (name) gets

S(selector) .attr (name, value) sets

S (selector) .css (name, value) sets

S (selector) .attr ({ object }) sets in bulk
S (selector) .css({ object }) sets in bulk

Style Modifiers

selector
selector

selector

S)
S)
S (selector)
S)
S)

selector

.CSsS(...)

.addClass (class)
.removeClass (class)
.hasClass (class)
.toggleClass (class)

Dimensions

selector) .height ()

width ()
width (200)
var offset = S(selector) .offset ()

selector

S () .
S (selector) .height (200)
S) .

) .

S (selector

offset.top
offset.left

Navigators - Finding

$('hl'").add('h2") S('a:first') .siblings ()

S('div:first').find('a'")
$('h3') .next ()

S('a:first') .children ()

S('h3:first') .nextAll ()
S('a:first').children('em')

S('a') .parent () S('h3'") .prev ()

S('a:first') .parents () $('h3') .prevAll ()

S('a:first') .contents ()

Navigators - Filtering

S('div').eqg(l) // gets second S('div') .not ('.entry')
S('div') .filter('.entry"') S('div') .slice (1, 3) // 2nd,3rd
$('div').filter (function (i) { $('div') .slice(-1) // last

return this.title == 'foo'

})

DOM Modifiers

els.append (content)

content.appendTo (els)

els.prepend (content)

content.prependTo (els)

els.after (content)

els.before (content)

content.insertAfter (els)

content.insertBefore (els)

.wrapAll ('<div /'>)

.wrapInner ('<div /'>)

-empty ()

.remove ()

DOM Construction

* Internally handles orphaned
nodes, events and data

var p = $('<p id="foo" />'"); // create node

p.text (‘Text'") ; // update node
p.appendTo (document .body) ; // append to DOM

/* Or as a oneliner */
S('<p id="foo" /
>') .text (YText') .appendTo (document.body) ;

Events

S('a:first') .bind('click', function () {
S (this) .css ('backgroundColor' , 'red');
return false;

}) s

S('a:first'").click (function () {
S (this) .css ("backgroundColor' , 'red');
return false;

}) s

Event Object

* jQuery passes a normalized W3C Event
object to all event callbacks

» Always passed to callback — no need to
check for window.event

Event Object Attributes

type - Describes the nature of the event.

target - Contains the DOM element that issued the
event

currentTarget - The current DOM element within the
event bubbling phase. This attribute will always be equal
to the this of the function

pageX/Y - The pageX/Y property pair returns the mouse
coordinates relative to the document.

result - WIll contain the last value returned by an event
handler (that wasn't undefined).

timeStamp - The timestamp (in milliseconds) when the
event was created.

Event Object Methods

preventDefault () - Prevents the browser from
executing the default action.

isDefaultPrevented () - Returns whether
preventDefault() was ever called on this event object.

stopPropagation () - Stops the bubbling of an event to
parent elements, preventing any parent handlers from
being notified of the event.

isPropagationStopped () - Returns whether
stopPropagation() was ever called on this event object.

stopImmediatePropagation () - Keeps the rest of the
handlers from being executed.

isImmediatePropagationStopped () - Returns

whether stoplmmediatePropagation() was ever called on
this event object.

Triggering Events

S('a:first') .trigger('click');

S('a:first').click () ;

eblur ()

echange ()

eclick()

edblclick ()

ecrror ()

e focus ()

Supported Events

e keydown ()

*keypress ()

*keyup ()

eload ()

emousedown ()

emouseover ()

emouseup ()

eresize ()

escroll ()

eselect ()

esubmit ()

eunload()

Advanced Events

$('a:first') .unbind('click");

S('a:first'") .unbind () ;

S('a').live('click?', function(){}); // delegation

S('a:first') .one('click', function() { })

S('a:first') .toggle (funcl, func?2);

S('a:first') .hover (funcl, func?);

Custom Events

/* SUBSCRIBE */
S (window) .bind('mail-recieved', function(event, mail) {
alert ('"New e-mail: ' + mail);

})

/* PUBLISH */
$ (window) .trigger ('mail-recieved', “New Mail Content”)

Ajax

o Simple:

S('div#news') .load('/news.html');

« Complex:

.ajax (options)

.get (url, [data], [callback])

.post (url, [data], [callback], [type])
.getJSON (url, [data], [callback])
.getScript(url, [data], [callback])

Ajax Events

* Two types of Ajax events

— Local Events: These are callbacks that you
can subscribe to within the Ajax request object

— Global Events: These events are broadcast to
all elements in the DOM, triggering any
handlers which may be listening.

Local Events

S.ajax ({
beforeSend: function () {
// Handle the beforeSend event
Yo
complete: function () {
// Handle the complete event

Global Events

/* PER SELECTOR */

S ("#loading") .bind ("ajaxSend", function () {
S (this) .show () ;

}) .bind ("ajaxComplete", function () {
S (this) .hide () ;

1) ;

/* GLOBALLY */
S.ajaxSetup ({
ajaxStart : function (xhr) {
S ("#loading") .show ()
I
ajaxStop : function (xhr) {
S ("#loading") .hide ()
}

Event Order

« ajaxStart (Global Event)
is event is broadcast if an Ajax request is started and no other Ajax requests are currently running.

beforeSend (Local Event) _ . .
This event, which is triggered before an Ajax request is started, allows you to modify the
XMLHttpRequest object (setting additional headers, if need be.)

ajaxSend (Global Event) _
is global event is also triggered before the request is run.

success il__ocal Event) _
;I;}hlsde\t/e)n is only called if the request was successful (no errors from the server, no errors with
e data).

ajaxSuccess ﬁGIobaI Event)
is event is also only called if the request was successful.

error (Local Event) _ .
This event is only called if an error occurred with the request (you can never have both an error
and a success callback with a request).

ajaxError (Global Event)
is global event behaves the same as the local error event.

complete (Local Event) . . .
This event is called regardless of if the request was successful, or not. You will always receive a
complete callback, even for synchronous requests.

_arjﬁxComplete (Global Event) . _ . .
is event behaves the same as the complete event and will be triggered every time an Ajax
request finishes.

. a'axStog ﬁGIobaI Event)
a

is glo

event is triggered if there are no more Ajax requests being processed.

Animation

* jQuery has built in effects:

S('hl') .hide('slow');
S('hl'").slideDown ('fast');
S('hl').fadeOut (2000) ;

» Chaining automatically queues the effects:

S('hl').fadeOut (1000) .slideDown ()

Animation

* You can specify custom animations

S ("#block") .animate ({
width:
opacity:
fontSize:
borderWidth:

}, 1500);

Plugins

* jQuery is extensible through plugins, which
can add new methods to the jQuery object

— Form: better form manipulation
— Ul: drag and drop and widgets
— ... many more

Plugin Development

/* Selector Plugin */
JQuery.fn.log = function (message) {

if (message) {
console.log(message, this);

} else {
console.log(this);

}

return this;

b

$ (document) .find (‘'a’) .1log (MAll <a>’'s”) .eq(0) .log()

/* Static Plugin */
S.hideLinks = function () {
return S('alhref]') .hide () ;

}

S.hideLinks ()

Data Cache

 Attaching data directly to DOM nodes can
create circular references and cause
memory leaks

 jQuery provides a data() method for safely
attaching information

S('div:first') .data('key', 'value');
console.log($('div:first') .data('key"'));
S('div:first') .removeData ('key"');

Utility Methods

* A simple set of utility methods are provided
to help with common tasks

« Some work directly on a jQuery collection
* Some are called statically

Utility Methods

$('a’) .map (function(i,e) { S.each([1,2,3], function () {
return this.href; console.log(this)

H) 1)

$('a’) .get ()
.merge ([1,2], [4,7]1) //[1,2,4,7]

S(‘a’) .each (function () {
if (this.href == ‘#7/){ .unique([1,2,1]) // [1,2]
return false; // stop

.grep (array, callback, invert)

S(this) .attr(

“title”, “external” .makeArray (arguments)

) ;
}) .inArray (1, [1,2,3])

S.map([1,2,3], function(i,e){

.extend (deep, target, objectl,
return this + 1i; objectN)

by // [1,3,5]

Performance

A Pragmatists Approach

Overview

Performance is a key factor in Javascript
Inconsistent client specs

Everything is being pushed to the front end
leaving your server as a set of glorified
web services

Browsers being pushed beyond their limits

JavaScript is parsed and interpreted each
time.

Some simple rules

Be Lazy

Write less code

* |nitial parsing of JavaScript is often a major
bottleneck
— No JIT, no cached object code, interpreted every time

« Can’t rely on browser caching to excuse large code
SlZze
— Yahoo study: surprising number of hits with empty cache

— Frequent code releases - frequently need to re-
download

* More code = more to download, execute, maintain,

etc.
— ldeal for large AJAX apps is <500K JS uncompressed

Write Less Code

« Minimize the JavaScript code you send down
— Minify = good, obfuscate = not much better
— Strip debug / logging lines (don'’t just set log-level = 0)
— Remove unnecessary OOP boilerplate
» Get/Set functions don’t actually protect member vars! etc.

* Minimize dependency on third-party library code
— Lots of extra code comes along that you don’t need

— Libraries solve more general problems = use like
scaffolding

Be Responsive

Minimize Perceived Load Time

* Put CSS at the top of your page and JS at
the bottom

* Draw major placeholder Ul with “loading...”
first. Offer constant feedback.

* Load / draw your application progressively
(lazy, on-demand)

Example

<html>
<head></head>
<body>
<div id=“msg”>Loading 1t Library</div>
<script>
var msg = document.getElementById(‘msg’);
</script>
<script src=“firstLibrary.js”></script>
<script>
msg.innerHTML = “Loading Second Library”;
</script>
<script src=“secondLibrary.js”></script>
<script>
msg.1innerHTML = “Complete...”;
</script>
</body>
</html>

Yield

« Always want to show a quick response
acknowledgement

— But browser often doesn’t update Ul until your code
returns!

« Solution: do minimum work, use setTimeout(0) to
yield

— Use closures to chain state together with periodic
pauses

— Use onmousedown instead of onclick (~100msec
faster!) but be aware of repercussions

— http://josephsmarr.com/oscon-js/yield.html|?9999999

Cache Back End Responses

 All data requests should go through data-
manager code

— Relé:]uest as needed and cache results for subsequent
asks

— Requesting code always assumes async response

« Use range caches - only fill in missing pieces
— |deal for partial views into long lists of data

« Balance local updates vs. re-fetching from APls

— Dodthe easy cases, but beware of too much update
code

— Worst case = trash cache and re-fetch = first-time
case

Be Pragmatic

Be Aware of Browsers Strengths

Avoid DOM manipulation; use innerHTML and
array.join (V")

Avoid dynamic CSS-class definitions & CSS
math

Avoid reflow when possible (esp. manually on
browser resize)

Avoid memory allocation (e.g. string-splitting)

Do DOM manipulation off-DOM, then re-insert at
the end

Cheat When You Can

« Use IDs when reasonable
— Finding by class / attaching event handlers is slow
— Protect modularity only when needed (e.g. widgets)

» Directly attach onclick, etc. handlers instead of
using event listeners where appropriate

« Use fastest find-elems available when you need
to scan the DOM (don’t rely on general-purpose
code) - sizzle

Inline Initial API Calls & HTML

« Tempting to load blank page and do everything in
JavaScript

— Have to redraw Ul dynamically; don’t want two copies of Ul code

* Problem: initial load is usually too slow
— Too many round-trips to the server; too long before initial Ul
shows up
« Solution: if you have to do it every time, do it statically
— Save out initial APl responses in web page

— Use data-manager to hide pre-fetching (can change your mind
later)

— Download initial HTML in web page

Be Vigilant

Be Aware of Aliases

var getEl = document.getElementById;

function checkEl (id) {
if (getEl (id) && !'getEl (id) .checked) {
getEl (id) .checked = true;

}
}

checkEl (‘Ysomelist’) ;

* For that one function call we have 3 calls to
getElementByld()!

« Common mistake when using 3" party libraries
(Prototype, jQuery make it easy to do this). Not
always this obvious.

Profile

« Bottlenecks abound and are usually not obvious
— Use firebug’s profiler
— Use timestamp diffs and alerts
— Comment-out blocks of code

* Measure with a consistent environment
— Browsers bog down - always restart first

— Try multiple runs and average (and don’t forget the
cache)

* |If possible define responsiveness rules from the
start.

Firebug Profiler

* Firebug - Plaxo 3.0 Preview Q@@

File View Help

Inspect Clear Profile]
Console | HTML (€SS Script DOM Net Options v
=/ Profile (1562.519ms, 23436 calls)

Function ‘ Calls ‘w Own Time | Time Avg Min ’ Max ‘ File

dj_ewval 16 9% 140.626ms 281.254ms 17.578ms Oms 125.002ms po3.js (line 77)
{no name) 21 6% 93.753ms 171.878ms 8.185ms Oms 15.626ms po3.js (line 1360)
getObjectCookie 61 6% 93.75ms 109.375ms 1.793ms Oms 15.625ms po3.js (line 4483)
{no name) 18 5% 78.127ms 109.377ms 6.076ms Oms 15.626ms po3.js (line 2264)
fastFindElems 375 5% 78.125ms 78.125ms 0.208ms Oms 15.625ms po3.js (line 4515)
addDays 106 4% 62.502ms 62.502ms 0.59ms Oms 15.626ms po3.js (line 6751)
objectifyDate 35 4% 62.5ms 62.5ms 1.786ms Oms 15.625ms po3.js (line 6082)
{ino name) 36 4% 62.5ms 62.5ms 1.736ms Oms 15.625ms po3.js (line 2758)
setIFrameSrc 1 3% 46.876ms 62.501ms 62.501ms 62.501ms 62.501ms po3.js (line 3797)
setOpacity 24 2% 31.251ms 31.251ms 1.302ms Oms 15.626ms po3.js (line 2253)
ino name) 18 2% 31.251ms 31.251ms 1.736ms Oms 15.626ms po3.js (line 2780)
{no name) 23 2% 31.251ms 31.251ms 1.359ms Oms 15.626ms po3.js (line 320)
moveChildren 3 2% 31.25ms 31.25ms 10.417ms Oms 15.625ms po3.js (line 1435)
getBorderBoxHeight 21 2% 31.25ms 31.25ms 1.488ms Oms 15.625ms po3.js (line 1984)
ino name) 21 2% 31.25ms 31.25ms 1.488ms Oms 15.625ms po3.js (line 1368)
(no name) 1 2% 31.25ms 31.25ms 31.25ms 31.25ms 31.25ms po3.js (line 1397)
localizeHtml 1 2% 31.25ms 31.25ms 31.25ms 31.25ms 31.25ms po3.js (line 10387)

b Q

Conclusion

« Stop pushing needless tasks to the browser

« Performance has a higher priority (over other
design factors) on the client than on the server
« Remember
— Be lazy
— Be responsive
— Be pragmatic
— Be vigilant

Tools

JSLint

JavaScript program that looks for problems in
JavaScript programs.

|dentifies common mistakes and overlooked
ISSUES

— Accidental global declaration

— Accidental closures

— Missing Semi-colons

Produces a report of all global declarations,
closures, unused variables.

Very strict.
Will hurt your feelings.

YUl Compressor

Compresses JavaScript and CSS

Does it in a safe manner (compared to
Packer which has broken certain scripts)

Produces one if the best compression
ratios

Bundles JSLint with it
Java based — build tool plugins

JSDoc

« JavaScript Documentation Tool
* Modelled on JavaDoc

* Should be used in conjunction with

compression tools to avoid code/comment
bloat

/**

* Function description

* (@param {String} paramName This is a string
* (@returns The radius of this circle

*/

QUnit

« Javascript based Unit Testing aimed

specifically at testing JQuery based code
but can effectively be used with any
JavaScript code

* Pages represent testsuites
* Produces interactive reports of tests

Best Practise

Some useful tips

Prefer Literals

Use This... Over This...

new Object () ;

new Array();

new RegExp ('[a-z]', 'gmi');

var fn function(a, Db) { fn new Function (

return a + b; 'a, b','return at+b?

Namespace

* Avoid polluting global namespace
 Avoid conflicts

Encapsulate Code Blocks

 Avoids pollution of global namespace
* No block scope spells trouble

Avoid Extending Native Objects

* Firefox.next will prevent overriding native
functions

* Unpredictable

* Requires rework when conflicts are hit (e.qg.
Prototype vs Firefox)

3" Party Libraries might do the same

Keep Function Style Consistent

* Function signatures should describe what it
expects (where appropriate)

 Mandatory arguments should be named.

* Optional arguments should be accepted as a
hash that can be applied over defaults

function func (mandl, mand2, opts) {
var options = S$S.extend ({}, {
optl : ‘test’,
opt2 : true
}, opts);
/* do functiony stuff */

Keep Braces Consistent

 Avoids uncontrolled semi-colon insertion

function x () {
return {

result:true

}

Use jQuery

* Or at least a library
* Avoid bloated libraries unless necessary
* Keep plugins to a minimum

Put JavaScript at the Bottom

Page rendering is blocked until JavaScript
IS executed.

Blocks parallel downloads
Screen may appear jumpy or laggy

Use DEFER only in emergency and
conditions permit

Put CSS at the Top

« CSS is applied progressively
* Avoids the flash of unstyled content
* Required by HTML specification!

Lint Your Code

o www.jslint.com — will hurt your feelings!

http://www.jslint.com/

Compress Your Code

JSMin

Packer

YUl Compressor
GZIP

Be careful when using packer inline with
GZIP

Use CSS Sprites

 Reduces HTTP request count

Remove Duplicated Scripts

* Areview of the ten top U.S. web sites
shows that two of them contain a
duplicated script

Use GET over POST

* In most browsers POST is a 2 step
process (send headers first then content)

* Near doubling of traffic
 Use GET where security isn't a concern

Delegate

* When dealing with many elements
delegate events rather than binding the
same function to each element

* Proofs page from dynamic DOM
manipulation or innerHTML updates.

Use External Files

« Externalizing JS and CSS can provide
faster pages

* More likely to be cached if external
(change less)

* Future browsers will compile JavaScript
(Google Chrome). Easier to do if external

Resources

Compression Tools

JSMin
http://crockford.com/javascript/jsmin

YUICompressor hitp://developer.yahoo.com/yui/
compressor/

Packer
http://dean.edwards.name/weblog/2007/04/packer3/

CompressorRater
http://compressorrater.thruhere.net/

http://crockford.com/javascript/jsmin
http://developer.yahoo.com/yui/compressor/
http://dean.edwards.name/weblog/2007/04/packer3/
http://compressorrater.thruhere.net/

jQuery

API
http://api.jquery.com

Plugins
http://plugins.jquery.com/

Ul
http://ui.jguery.com/

http://api.jquery.com/
http://plugins.jquery.com/
http://ui.jquery.com/

Debugging/Logging Tools

Firebug
http://getfirebug.com/

Firefox Developer Toolbar
http://chrispederick.com/work/web-developer/

Firebug Lite
http://getfirebug.com/

BlackbirdJS
http://code.google.com/p/blackbirdjs/

Microsoft Script Debugger

http://www.microsoft.com/downloads/details.aspx?
familyid=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en

http://getfirebug.com/
http://chrispederick.com/work/web-developer/
http://getfirebug.com/
http://code.google.com/p/blackbirdjs/
http://www.microsoft.com/downloads/details.aspx?familyid=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en

Code Checking Tools

JSLint
http.//www.|slint.com/

http://www.jslint.com/

Activate Your Web Pages

The Definitive Guide

O'REILLY®

Unearthing the Excellence in Javascript

JavaScript:
The Good Parts

O'REILLY* ‘ “Y&HOO! Press Douglas Grockford

THE EXPERT'S VOICE® IN WEB DEVELOPMENT a

Pro

JavaScript
Techniques

John Resig

Apress*

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Pro

JavaScript
Design Patterns

Ross Harmes and Dustin Diaz

Apress*

Principles and Patterns for Rich Interactions

Desigfiing
Web Interfaces

O'REILLY* Bill Scott & Theresa Neil

Bear Bibeault
Yehuda Katz

Joha Resig
Geator of Query

in Act

| | FIYTID

