JavaScript Performance Considerations




Overview I
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e Performance has a higher priority on the client

e Less/No control of client machine configuration

e JavaScript is interpreted each time the page loads
e Too much being pushed to the client side

e Browsers being pushed to their limits
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Steps To Improve Performance I
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Write less code

Minimize perceived load times

Increase perceived responsiveness

Cache back-end responses

Play to the browsers strengths

Be as specific as possible in DOM selection
Render initial page as statically as possible

Beware of aliases
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Profile often
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Write Less Code




Write Less Code !% ;

e More code means more to download and execute

e |[nitial parsing of JavaScript is a major bottleneck

e Don’ trely on browser caching to excuse code bloat
e Strip debugging code and OO boilerplate

e Minimize dependency on 3 Party Frameworks

< 500kb of JavaScript (uncompressed)
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Microsoft Ajax

MooTools 1.2.2 (All)

MooTools 1.2.2 (Core)

Ext 2.2 (All)

Ext 3.0 (Core)

Prototype 1.6.0.3

jQuery 1.3.2

Bloat Threshold
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Balance 3™ party offerings with custom code
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Minimize Perceived Load Times




Minimize Perceived Load Times I
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e Minimize JavaScript and CSS sent from server

e Place CSS at the top of the page

e Place JavaScript at the bottom of the page

e Complex screens should be masked while loading
e Offer constant feedback

e Load lazily or “on demand”
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Minimize Perceived Load Times I
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Initial styles loaded Initial scripts loaded

Loading screen removed
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Loading Styles... Loading Scripts...

Further scripts ﬁl

loaded on demand
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Minimize Perceived Load Times I
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<html>
<head></head>
<body>
<div id="msg” >Loading 1st Library</div>

<script src="firstLibrary.js” ></script>

<script>
var msg = document.getElementByld( ‘msg’ );
msg.innerHTML = “Loading Second Library”;

</script>

<script src="secondLibrary.js”></script>

<script>
msg.parentNode.removeChild(msg);

</script>

</body>
</html>
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Increase Perceived Responsiveness




Increase Perceived Responsiveness I
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e Do as little work as possible
e Use setTimeout() or Chunking to allow Ul updates
e Use “sooner” events

e Bind directly to inline events instead of event
listeners

e Delegate multi element events
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Increase Perceived Responsiveness I

Per element

trl.onclick = clickHandler;
tr2.onclick = clickHandler;

trN.onclick = clickHandler;
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Delegation

table.onclick = function(e){
if(e.target.nodeName == “tr”){
clickHandler(e);

}
}




Cache Back End Responses




Cache Back End Responses IK
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e Data requests should go through a Data Manager

e Cache frequent static responses

e Manage cache using HEAD requests

e Use range caches for large data sets (autocomplete)

e Balance local updates with refetching
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Cache Back End Responses

Type your county (for the demo):
Ne

MNepal

Netherlands
Netherlands Antilles
Newy Caledonia

Newy Zealand

Data Manager

-
100
101

Type your county (for the demo):
Nef

Netherlands

Metherlands Antilles

Data Manager

-
100
101
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Play To The Browsers Strengths




Play To The Browsers Strengths IK
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e Avoid DOM manipulation; use innerHTML where
appropriate

e Reduce dynamic CSS definitions in JavaScript
e Avoid reflow

e Do DOM work off-DOM and insert at end

e Be aware of the best performing techniques

e Use JSON over XML where possible
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Play To The Browsers Strengths

Apply Multiple Functions to Objects

Normalize results

Firefox 2.0.10 on Windows NT

Test Opsisec
Multi Task Wark with String 17244
Multi Task Woark with Array 18291
Multi Task Woark with Self Calling Function 14570

Opsisac (Firefox 3.0.10 on Windows NT)

Multi Task Work with String(17.2K)
Multi Task Work with Armay(18.3K)
Multi Task Work with Self Calling Function(14.6K)

0 18.3K

Q) . . .
String Building

Normalize results

Firefox 3.0.10 on Windows NT

Test Opsisec
String Building using s +=i 3912
String Building using s=s +i 3864
String Building using temp array 1399

Ops/sec (Firefox 3.0.10 on Windows NT)

String Building using s += i(3.9K)

String Building using s = s + i(3.9K)

Stng Building using temp array(1.4K)
3.9K

Array Expansion

Normalize results

Firefox 3.0.10 on Windows NT

Test Opsisec
Index Linear 20449
Index Non-Linear 17131
Index Non-Linear 2 19078
push 14954

Opsisac (Firefox 3.0.10 on Windows NT)

Index Linear(20.4K)

Index Non-Linear(17.1K)

Index Non-Linear 2(19.1K)
push(15K)

Function Constructor vs Eval

Normalize results

Firefox 3.0.10 on Windows NT

Test Opsisec
Using Function 6185
Using Eval 734
Using Eval #2 755

Ops/sec (Firefox 3.0.10 on Windows NT)

Using Function (6.2K)
Using Eval(734)
Using Eval #2(755)

6.2K
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Be Specific




Be Specific IK
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e Be specific as possible when working with the DOM
e Use ID’ s getElementBylID where possible

e Use getElementsByTagName and selectorQueryAll if
available

e Use a fast 3" party selector engine for complex
queries — Sizzle, Peppy, LLamalabs Selector, Sly,
base2, YUI Selector

But be aware of browser quirks!
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520ms (worse)

465

310

Oms (best)

Prototype

jQuery

HWES
HE7
HWES
WFF3

W Opera
W Safari 4
B Chrome 2




Render Initial Page Statically




Render Initial Page Statically I
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e Don’ t be tempted to start with a blank page and use
JavaScript to build page

e Put as much static content on the page as possible
e Reduces number of server round trips

e Set initial page state statically (visibility etc.)

e Embed smaller data as JSON or XML
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Beware of Aliases




Beware of Aliases I ,
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var S = document.getElementByld;
function checkEl(id){

if(S(id) && ! $(id).checked){
S(id).checked = true;

}
}

checkEl("somelist");

e Results in 3 calls to DOM methods

e Common mistake when using 3" party libraries such
as Prototype and jQuery
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Profile Often




Profile Often I§
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e Profile often; use Firebug, IE8 Developer Tools, Safari
& Chrome Developer Tools, Opera’ s Dragonfly,
Timestamp diffs or just comment out code to identify
bottlenecks

e Measure in a consistent environment, restart
browser, clear cache etc.

e Take averages of runs to normalise results

e Define responsiveness as early as possible
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Conclusion




Conclusion I ,
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e Do as much on the server as possible
e Avoid pushing needless tasks to the client
e Prioritise performance on the client

e Review and profile often

Know your enemy!
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Questions?




