JavaScript Performance Considerations

Overview I

kaines

e Performance has a higher priority on the client

e Less/No control of client machine configuration

e JavaScript is interpreted each time the page loads
e Too much being pushed to the client side

e Browsers being pushed to their limits

kaines

Steps To Improve Performance I

kaines

Write less code

Minimize perceived load times

Increase perceived responsiveness

Cache back-end responses

Play to the browsers strengths

Be as specific as possible in DOM selection
Render initial page as statically as possible

Beware of aliases

0 © N o 0 R W DNPR

Profile often

kaines

Write Less Code

Write Less Code !% ;

e More code means more to download and execute

e |[nitial parsing of JavaScript is a major bottleneck

e Don’ trely on browser caching to excuse code bloat
e Strip debugging code and OO boilerplate

e Minimize dependency on 3 Party Frameworks

< 500kb of JavaScript (uncompressed)

kaines

Microsoft Ajax

MooTools 1.2.2 (All)

MooTools 1.2.2 (Core)

Ext 2.2 (All)

Ext 3.0 (Core)

Prototype 1.6.0.3

jQuery 1.3.2

Bloat Threshold

381119
BI A
- 952

1771 0 323
127 373
118 382

0 100 200 300 400 500 6(;0 700 8(;0 9(I)0 10I00
Size (kb)

Balance 3™ party offerings with custom code

kaines

Minimize Perceived Load Times

Minimize Perceived Load Times I

kaines

e Minimize JavaScript and CSS sent from server

e Place CSS at the top of the page

e Place JavaScript at the bottom of the page

e Complex screens should be masked while loading
e Offer constant feedback

e Load lazily or “on demand”

kaines

Minimize Perceived Load Times I

kaines

Initial styles loaded Initial scripts loaded

Loading screen removed

[10 [O | —
'E
i-—;'E # The Friday lash »
e o Za
kaines kaines =
Loading Styles... Loading Scripts...

Further scripts ﬁl

loaded on demand

kaines

Minimize Perceived Load Times I

kaines

<html>
<head></head>
<body>
<div id="msg” >Loading 1st Library</div>

<script src="firstLibrary.js” ></script>

<script>
var msg = document.getElementByld(‘msg’);
msg.innerHTML = “Loading Second Library”;

</script>

<script src="secondLibrary.js”></script>

<script>
msg.parentNode.removeChild(msg);

</script>

</body>
</html>

kaines

Increase Perceived Responsiveness

Increase Perceived Responsiveness I

kaines

e Do as little work as possible
e Use setTimeout() or Chunking to allow Ul updates
e Use “sooner” events

e Bind directly to inline events instead of event
listeners

e Delegate multi element events

kaines

Increase Perceived Responsiveness I

Per element

trl.onclick = clickHandler;
tr2.onclick = clickHandler;

trN.onclick = clickHandler;

kaines

[RELRRRDR

kaines

Delegation

table.onclick = function(e){
if(e.target.nodeName == “tr”){
clickHandler(e);

}
}

Cache Back End Responses

Cache Back End Responses IK

kaines

e Data requests should go through a Data Manager

e Cache frequent static responses

e Manage cache using HEAD requests

e Use range caches for large data sets (autocomplete)

e Balance local updates with refetching

kaines

Cache Back End Responses

Type your county (for the demo):
Ne

MNepal

Netherlands
Netherlands Antilles
Newy Caledonia

Newy Zealand

Data Manager

-
100
101

Type your county (for the demo):
Nef

Netherlands

Metherlands Antilles

Data Manager

-
100
101

kaines

Play To The Browsers Strengths

Play To The Browsers Strengths IK

kaines

e Avoid DOM manipulation; use innerHTML where
appropriate

e Reduce dynamic CSS definitions in JavaScript
e Avoid reflow

e Do DOM work off-DOM and insert at end

e Be aware of the best performing techniques

e Use JSON over XML where possible

kaines

Play To The Browsers Strengths

Apply Multiple Functions to Objects

Normalize results

Firefox 2.0.10 on Windows NT

Test Opsisec
Multi Task Wark with String 17244
Multi Task Woark with Array 18291
Multi Task Woark with Self Calling Function 14570

Opsisac (Firefox 3.0.10 on Windows NT)

Multi Task Work with String(17.2K)
Multi Task Work with Armay(18.3K)
Multi Task Work with Self Calling Function(14.6K)

0 18.3K

Q) . . .
String Building

Normalize results

Firefox 3.0.10 on Windows NT

Test Opsisec
String Building using s +=i 3912
String Building using s=s +i 3864
String Building using temp array 1399

Ops/sec (Firefox 3.0.10 on Windows NT)

String Building using s += i(3.9K)

String Building using s = s + i(3.9K)

Stng Building using temp array(1.4K)
3.9K

Array Expansion

Normalize results

Firefox 3.0.10 on Windows NT

Test Opsisec
Index Linear 20449
Index Non-Linear 17131
Index Non-Linear 2 19078
push 14954

Opsisac (Firefox 3.0.10 on Windows NT)

Index Linear(20.4K)

Index Non-Linear(17.1K)

Index Non-Linear 2(19.1K)
push(15K)

Function Constructor vs Eval

Normalize results

Firefox 3.0.10 on Windows NT

Test Opsisec
Using Function 6185
Using Eval 734
Using Eval #2 755

Ops/sec (Firefox 3.0.10 on Windows NT)

Using Function (6.2K)
Using Eval(734)
Using Eval #2(755)

6.2K

k

a l

nes

Be Specific

Be Specific IK

kaines

e Be specific as possible when working with the DOM
e Use ID’ s getElementBylID where possible

e Use getElementsByTagName and selectorQueryAll if
available

e Use a fast 3" party selector engine for complex
queries — Sizzle, Peppy, LLamalabs Selector, Sly,
base2, YUI Selector

But be aware of browser quirks!

kaines

520ms (worse)

465

310

Oms (best)

Prototype

jQuery

HWES
HE7
HWES
WFF3

W Opera
W Safari 4
B Chrome 2

Render Initial Page Statically

Render Initial Page Statically I

kaines

e Don’ t be tempted to start with a blank page and use
JavaScript to build page

e Put as much static content on the page as possible
e Reduces number of server round trips

e Set initial page state statically (visibility etc.)

e Embed smaller data as JSON or XML

kaines

Beware of Aliases

Beware of Aliases I ,
kaines

var S = document.getElementByld;
function checkEl(id){

if(S(id) && ! $(id).checked){
S(id).checked = true;

}
}

checkEl("somelist");

e Results in 3 calls to DOM methods

e Common mistake when using 3" party libraries such
as Prototype and jQuery

kaines

Profile Often

Profile Often I§

kaines

e Profile often; use Firebug, IE8 Developer Tools, Safari
& Chrome Developer Tools, Opera’ s Dragonfly,
Timestamp diffs or just comment out code to identify
bottlenecks

e Measure in a consistent environment, restart
browser, clear cache etc.

e Take averages of runs to normalise results

e Define responsiveness as early as possible

kaines

Conclusion

Conclusion I ,
kaines

e Do as much on the server as possible
e Avoid pushing needless tasks to the client
e Prioritise performance on the client

e Review and profile often

Know your enemy!

kaines

Questions?

